Monday, June 26, 2017

RF Design and High Frequency Board Manufacturing

The performance of a product operating at high frequencies depends largely on the electrical characteristics of the Printed Circuit Board (PCB) used for mounting and connecting its circuit components. The magnitude of the impact of the PCB design increases exponentially with increase of the operational frequency. Therefore, designers need to include electrical models of PCB structures when simulating RF circuits. For achieving optimum solutions, the product/PCB designer and the manufacturing engineer must appreciate the requirements of RF design.

Designing for High Frequencies

Designing a board to work at high frequencies requires the designer to be critical of the following areas:
  • Material used for the PCB
  • Placement of traces
  • Placement of planes
  • Component interconnections
Materials Used for RF PCBs

RF PCBs can use a variety of different materials. Although common board materials used for high frequency circuits are FR-4 and derivatives of FR-4, many other base substrates are also used as they offer better electrical performance. These include specialized low-loss RF material such as pure PTFE, ceramic filled PTFE, Hydrocarbon Ceramic, and High-Temperature Thermoplastic/Ceramic.

Although FR-4 has its limitations when used for high-frequency work, the RF designer must understand these limitations and make cost/performance tradeoffs for the design. Typical limitations of FR-4 are:
  • Stability of dielectric constant—Varying from lot to lot and over frequency
  • Loss factor—Depending on surface contamination and the hygroscopic nature of the material
  • Ability to withstand processing temperatures—Lead-free processing temperatures are higher than regular soldering temperatures
  • Thermal conductivity—Even low-power RF circuits can produce a lot of heat
Therefore, selecting a suitable material for making a PCB operating at high frequencies depends on the above factors and the product cost. The choice could range from the low-cost FR-4 material, with its higher loss and not tightly controlled dielectric constant, to FR-4 derivatives with better specifications, or to other specialized low-loss RF material with their well-specified dielectric constant.

Fabrication Issues with Special Materials

All laminates mentioned above involve individual fabrication issues. For achieving the proper quality and reliability, the manufacturer must follow these individual fabrication notes for each substrate material for storing, handling, preparing the inner layer, surface preparation for photoresist application, bonding, drilling, deburring, and plating.

Manufacturers require setting up special processes for fabricating PCBs with low-loss RF materials to work at high frequencies. For instance, plated-through hole preparation is very critical for PTFE substrates—it needs an etch-back process requiring Plasma etch setup to prepare the PTFE hole surface and make it capable of accepting electroless copper plating. Therefore, apart from proper selection of material, following the proper fabrication methods is equally important for achieving a good quality PCB working reliably at high frequencies.

Placement of Traces

For matching the impedance, designers effectively manage the spacing of traces, ground planes, and the dielectric material to form a controlled impedance transmission line. They do this in several ways—in the form of a microstrip, stripline, co-planar waveguides, and differential pairs. The width of the trace, the dielectric thickness, dielectric constant of the used dielectric material and copper thickness determine the impedance. As high frequency signals are very sensitive to noise, ringing, and reflections, they must be designed with great care towards impedance. Mostly preferred impedance is 50 ohms for single ended and 100 ohms for differential, with control limits of ±10%.

Fig.1: Microstrip

Fig.2: Centered Stripline
Fig.3: Off-Center

Microstrip: This is a circuit trace carrying the RF signals routed on an outside layer of the PCB with a reference plane below it. The reference plane may be power or ground plane.

Stripline: This is a circuit trace carrying the RF signals routed on an inside layer of the PCB with two low-voltage reference planes above and below it. The reference planes may be power and or ground plane. The stripline can be equidistant from the two reference planes, in which case it is called the centered stripline, or it can be an off-center stripline, where it is closer to one of the reference planes.

Fig.4: Coplanar
Fig.5: Coplanar Waveguide with Ground

Co-planar Waveguide: This is a circuit trace carrying the RF signals embedded within a ground reference plane on the same layer of the PCB. Co-planar waveguides (CPW) offer lower loss tangent than microstrips do, but have a higher skin effect loss, as fields concentrate on the edges of the trace and ground. Another form of co-planar waveguide is the co-planar waveguide with ground (CPWG), where a ground plane is placed just below the waveguide layer.

Fig.6: Coplanar Differential Pair
Fig.7: Coplanar Differential Pair with

Co-planar Differential Pairs: These are two traces carrying the RF signals embedded within a ground reference plane on the same layer of the PCB. This arrangement is also called the CP Differential Pair or Edge-Coupled CPW. This gives an extra degree of signal-to-noise isolation over the standard CPW. An added ground plane just below the layer offers even better field containment over the coupled CPW, and is called the Edge Coupled CPWG.

Placement of Planes

Most RF products use multilayer PCBs. These comprise a number of laminates of the substrate material separately etched, drilled, and bonded. The chief advantage of this is to allow the use of more than two conductor layers, thereby reducing the required board space, but at increased cost.

Setting up the laminates is a major part of the design for a multilayer RF board. The stack defines the number of layers the board will ultimately possess. At this stage, it is important to define the layers carrying specific high-speed tracks, and the placement of the ground and power layers with respect to those layers. Enclosing tracks carrying high frequency signals within the ground and power layers serves to define two significant factors related to high speed multilayer design—minimizing cross-talk, and maintaining a check on the impedance on the board. However, the cost of the board increases proportional to the number of layers it has, and therefore, the number of layers is usually a compromise of the board’s functionality and its cost.

RF products typically use a four or six layer FR-4 multilayer construction. Drilled and plated through holes or vias link tracks on one layer to tracks on other layers or all layers. Complex structures use blind or buried vias, with blind vias connecting the outermost layers to one or more inner ones, while buried vias connect only the inner layers and do not appear on the outermost layers. The third type of via is the through via, going through all the layers of the board. To create the connections, it is necessary to drill and then plate-through all vias. Via structures have a major effect on the fabrication processes of the PCB and contribute to the cost of the finished board.

Component Interconnections

Parasitic elements of a PCB refer to its physical attributes that affect the performance of the circuit. For instance, at high frequencies, a long thin track will usually be inductive, while a large pad over a ground plane will behave like a capacitor. In addition, when modeling in real circuits for, say a series capacitor, the designer must also include the impedance of the connections between the ground plane and circuit components.

A plated through via hole also adds significant inductance. RF designers can use good circuit simulation packages that include models to allow their addition. For instance, the typical inductance of a 0.2 mm diameter, 1.6 mm long hole can be as much as 0.75 nH. Although this may seem to be small, it can exert significant influence at high frequencies.

Components mounted on the PCB also contribute with their non-ideal characteristics. The use of Surface Mount Device (SMD) components helps to reduce the effect largely because of their reduced lead lengths and small construction, but the effect is still prominent at higher frequencies.

Designers use different ground plane strategies for their RF PCB design, and there is no unique solution as the best strategy. While most designers advocate breaking up the ground plane over the analog, digital, radio, and audio parts of the circuit, providing an individual ground plane of low impedance for all parts of the circuit is usually a good point to start.

Designers need to consider the flow of currents carefully throughout the product to minimize interferences between the audio and radio circuits. This assumes even greater significance if the design uses Digital Signal Processing (DSP) and microprocessors.

RF PCB Layout Strategies and Techniques

  • Separate all RF, low-level analog,  and digital sections.
  • Divide the RF section into circuit groups (amps, LO, VCO, etc.).
  • Place all the high-frequency components early in the layout, as this helps to minimize the length of the RF routes (in RF PCBs, functional orientation is more important compared to DFM).
  • Place the components carrying the highest frequency next to the connectors.
  • Never place unrelated inputs and outputs next to each other. For instance, multi-stage windings should never be placed adjacent.
  • When long input or output to RF amplifiers is unavoidable, choose to make the output longer.
  • As the trace impedance is a critical factor when trying to control reflections, always match the impedance between the driver and the load, except where the trace is shorter than 1/20th of the wavelength.
  • When using pull-up inductors or resistors at the outputs of open-collector devices, always place the pull-up component next to the output pin it is pulling up.
  • In addition to decoupling the main power pins of the IC, decouple the pull-up also.
  • Inductors usually have large magnetic fields around them-

    • Never placed them close together, when in parallel (unless the intention is to couple their magnetic fields)
    • Separate all inductors by 1x times the body height (minimum) OR
    • Place inductors perpendicular to one another
  • Confine “ALL” routes to the section or stage to which they are assigned –
    • Digital traces in the digital section
    • Low-level analog traces in the low-level analog section
    • RF traces in the RF section
    • Routing traces into adjoining sections is not recommended
  • Route all short RF traces on the component side of the PCB, rout them to eliminate vias
  • Place a ground layer below the RF traces.
  • Minimize the vias in the RF path, as this reduces the breaks in the ground plane(s) and –
    • Minimizes inductance
    • Helps contain stray magnetic and electric fields.
  • Long controls lines are acceptable, but take care to route them away from RF inputs.
  • Keep RF lines away from one another by a minimum distance to avoid unintended coupling & crosstalk.
  • Minimum spacing is a function of the acceptable level of coupling, and is good for crosstalk, directional couplers, crosstalk, differential lines coupled in even or odd modes.

Summary

Finally, the design of a PCB and its fabrication for high frequency use is a complex process requiring intimate communication between the designer and the fabricator, with each understanding the issues related to high-speed design.

Fore More Details:

Phone: +91 7600012414

Thursday, June 8, 2017

Important Considerations While Designing A Multi-Layer Board

Apart from the regular Design Rule Checks (DRC) that most Printed Circuit Board (PCB) design software offer and the various standards that one has to follow while designing a PCB, there are other important considerations applicable to the design process. Unless the PCB is designed properly in the first place, issues are going to crop up eventually. Although not complete, these considerations may be summed up as follows:
  • Defining the PCB Stackup
  • Introducing Suitable Via Types
  • Setting Up a Breakout Strategy
  • Checking Signal Integrity
  • Checking Power Integrity
Defining the PCB Stackup

This is the most important step in designing a multi-layer board. As the cost of the board rises proportional to the number of its layers, specifying the stackup at the start is essential, as this defines the optimum number of layers for the PCB. This also helps the designer/engineer to establish the characteristic impedances on the various layers. In actual practice, defining the PCB stackup/layer-count is often a trade-off with the fabrication processes, through which the designer/engineer tries to achieve the desired reliability, cost targets, and yield. For the designer to understand the PCB stackup, it is necessary for them to know how manufacturers build up a multilayer PCB.


                                                    Structure of Multilayer PCB

1: Blind via. 2: Buried via. 3: Through-hole via

Image Courtesy: http://techdocs.altium.com/sites/default/files/wiki_attachments/209845/Pcb_Obj-Via_Via_LayerStackup.png

All multi-layer boards are built up of cores, pre-pregs, and copper foils in the form of a panel. The core is essentially a double-sided PCB. It consists of a rigid base laminate with copper foils pre-bonded on both sides. To make up a multi-layer PCB, manufacturers place one or more sheets of pre-preg on each side of the core, each followed by a sheet of copper foil.

In practice, the designer generates Gerber files from the PCB design software on his computer, with one set of patterns for each layer along with the drill file containing details of all the holes in that layer. The manufacturer starts with drilling the core for buried vias (if required), and electroplates them. The next step involves image transferring according to the pattern for the innermost layers, and etching the copper foils on both sides of the core. The copper patterns are usually given a chemical coating to make them suitable for bonding to subsequent layers.

Pre-pregs are formed by pre-(im)preg(nating) glass-fiber cloth with uncured resin. For the additional layers, PCB manufacturers bond sheets of copper foil and pre-preg onto the finished core using pressure and heat. The process cures the resin within the pre-preg, while bonding the panel together. The copper foils on both sides of the build are then drilled for blind vias using depth-controlled drilling machines, and the holes are electroplated. Copper pattern images for the two layers are then transferred to the panel and the sides etched. This process is repeated for all subsequent layers.

Once all the layers of the board have been built-up, the outermost copper layers also receive the same treatment of drilling for blind and through-hole vias, electroplating, image transferring, and subsequent etching. A green mask is applied to the outermost layers to prevent undesired shorting during soldering, and an application of silkscreen helps in component mounting. All exposed solderable copper pads are then given a finishing treatment as required by the customer. Finally, a routing machine separates individual boards from the panel, and cuts the PCBs to their required shape and size. Refer pcb-manufacturing-process for more details.

Introducing Suitable Via Types

With multiple layers on the PCB, there must be some way to connect between them. Designers use various types of plated through vias to interconnect the circuits on multiple layers and components. Mostly, these are Through, Buried, Blind, and Micro type vias, and each has its own function. As the name suggests, through-hole vias provide a means for mounting components with leads. These holes run through the entire stack, and connect the circuit on the topmost layer to that on the bottom layer, and to any other layer in between.

Buried vias are not visible on either surface of the PCB, as they mainly connect circuits on inner layers other than that on the top and bottom layers. Blind vias connect the circuits on the outermost layers to those on any of the inner layers. Therefore, blind vias are visible only on any one of the outermost layers.

Introduction of highly integrated packages such as the Ball Grid Array (BGA), and the shrinking outlines of modern electronic gadgets have reduced the available space for the PCB as well. To pack more circuitry within the limited space designers now use micro-vias. These are extremely small diameter vias, which are often placed on pads and tracks giving more space to the designer to route their traces. Vias placed on pads or tracks are electroplated and often filled and covered with copper.

Designers should ensure the via they have chosen to apply has the desired current carrying capacity. They can parallel additional vias to build up the necessary high current paths.

Setting Up a Breakout Strategy

The designer must ensure it is possible to breakout and route all the signals on high-pin-count integrated circuits that are so common nowadays—as this will affect the stackup of the PCB as well. This may require extensive use of micro-vias and in-pad vias that go deep into the stack. After defining the stackup, the designer must decide on the routing strategy to be used for the board—a layer-based breakout, the traditional East, West, North, and South, or a hybrid style.

Checking Signal Integrity

This is an essential part of designing a good PCB. An engineer will typically consider things such as track lengths, characteristic impedances, and the signal rise and fall times on them. He or she will also consider the drive strengths of the drivers and the resulting slew rates due to terminations. To ensure the best performance, the pre-layout and post-layout signal-integrity simulations are very useful, as is the consideration for the crosstalk budget.

Checking Power Integrity

Modern high-performing devices, especially ASICs and FPGAs, usually work on low voltages but require large currents. Therefore, considerations for the power distribution network and its static and dynamic performance on the multi-layer board assume greater significance, and defining the power and ground layers in the stackup is important to characterize this performance. Placement of the power and ground layers with respect to the signal layers also affects signal integrity, especially for traces that carry high-frequency or high-speed signals.

Conclusion

The above does not necessarily cover all aspects of the design of all types of multi-layer PCBs, but only the most important ones to provide a good starting point. For instance, designers of multi-layer PCBs for power circuits must consider wider traces to withstand higher currents, use an inner layer for control ground, and keep the power and control grounds separate.

Likewise, designers of multi-layer boards for mixed-signal circuits must consider protecting the analog ground from noise, and keep the digital and analog grounds separate.

Finally, there are two very important points every designer of multi-layer PCBs should consider. First, they should engage with a manufacturer of PCBs with proven capabilities in the field. Second, the designer should be in constant touch with their PCB provider to ensure the design they are proposing is manufacturable.

For More Details >>>

Phone: +91 7600012414